Toward Silicon-Proven Detailed Routing for Analog and Mixed-Signal Circuits

Hao Chen, Keren Zhu, Mingjie Liu, Xiyuan Tang, Nan Sun, and David Z. Pan
ECE Department
The University of Texas at Austin
This work is supported in part by the NSF under Grant No. 1704758, and the DARPA ERI IDEA program

Nov 12, 2020
Speaker – Hao Chen

- I am a Ph.D. student in electrical and computer engineering at The University of Texas at Austin.

- I received the B.S. degree in electrical engineering from National Taiwan University (NTU) in 2019.

- Research interests: VLSI physical design and analog/mixed-signal circuit layout synthesis.
High Demand of Analog/Mixed-Signal IC

- Internet of Things (IoT), autonomous and electric vehicles, communication and 5G networks…

- Every sensor-related application needs analog circuits!!

Sources: IBM
Challenges of Analog Layout Routing

Human experience

Company A
Rules A

Company Z
Rules Z

Heuristic constraints

No comprehensive and exact descriptiveness!!

Aesthetic engineering

Hey, that looks strange, right?

Courtesy of [Ou+, TCAD’14]

Courtesy of [Rutenbar, TCACE’16]
Typical Automatic Analog Circuit Design Flow

Optimization-based approach

Schematic Design
- Circuit Spec.
 - Architecture & Topology Selection
 - Analog Sizing
 - Spec. Met?
 - N
 - Y
 - Analog Placement
 - Analog Routing
 - Spec. Met?
 - N
 - Y
 - Layout

Layout Design
- Placement
 - Routing
 - Constraints
- Final layout

Goal: Tape-out ready layout

- DRC/LVS clean
- Optimized performance
Analog Routing Constraints

- Symmetry constraints are widely accepted

Symmetry constraints

- Mirror symmetry
- Mirror self-symmetry

Routing Guide

Cannot be totally symmetric!!

[Xiao+, ICCAD’10][Ou+, TCAD’14][Zhu+, ICCAD’19]…
Analog Routing Constraints

• Symmetry constraints are widely accepted
Analog Routing Constraints

Symmetry constraints
- Mirror symmetry
- Mirror self-symmetry
- Cross symmetry
- Partial symmetry

New proposed constraints

Current matching, balancing

Electrical constraints
- Metal width lower bound for long wires
- Minimum number of cuts
- Avoid IR drop issues

- 2x2 cuts
- 1x2 cuts
- \(\geq W_1 \)
- \(\geq W_2 \)
Our AMS Routing Framework

- Repeat the routing process for each node in the hierarchy tree
Symmetry Constraint Allocation

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

\[
\text{Score} = \frac{\text{matched pins}}{\text{total pins}} = \frac{2}{5}
\]
Symmetry Constraint Allocation

• Assign symmetry constraints to nets according to pins locations

• Maximize the overall potential routing symmetry (Weighted graph matching)

\[
\text{Score} = \frac{\text{#matched pins}}{\text{#total pins}} = \frac{4}{5}
\]

Best axis

Net1

Net2

Net3

Net4
Symmetry Constraint Allocation

• Assign symmetry constraints to nets according to pins locations

• Maximize the overall potential routing symmetry (Weighted graph matching)
Symmetry Constraint Allocation

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

\[
\text{Score} = 2 \cdot \frac{\max(|N_2|, |N_3|)}{\max(|N_2|, |N_3|)} = 0
\]

\[|M_i| = \#\text{matched pins in net } i\]
Symmetry Constraint Allocation

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

\[
\text{Score} = 2 \cdot \frac{\max(|N_2|,|N_3|)}{\max(|N_2|,|N_3|)} = 2 \cdot \frac{2}{3} = \frac{4}{3}
\]

\[|M_i| = \#\text{matched pins in net } i\]
Symmetry Constraint Allocation

• Assign symmetry constraints to nets according to pins locations

• Maximize the overall potential routing symmetry (Weighted graph matching)

Sparse graph

Edmond’s blossom algorithm
Symmetry Constraint Allocation

• Assign symmetry constraints to nets according to pins locations

• Maximize the overall potential routing symmetry (Weighted graph matching)

Assigned Constraints

• Net1: self-symmetry

• Net2, Net3: symmetry

• Net4: self-symmetry
Pin Access Assignment

Design rule violations

Invalid points
Pin Clustering

$p_{i,j}$: the j^{th} pin of net i

- Find the maximum subset of totally symmetric pins and form clusters
- Connect the pins in each cluster
- Connect the clusters and the remaining pins
Post Processing

Metal patching for design rules

patch metal

concave jog

clockwise

counterclockwise

convex jog

< w
Experimental Results

Setup
• C++ with Boost, Lemon
• CPU: Intel i9-7900X @ 3.3GHz

Benchmark circuits
• COMP: comparator
• OTA1: Miller compensation OTA
• OTA2: 2-stage feedforward compensation OTA
• ADC1: 2nd-order CT ΔΣ modulator
• ADC2: 3rd-order CT ΔΣ modulator

Benchmark

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>WL</th>
<th>VIA</th>
<th>Sym Deg.</th>
<th>DRV</th>
<th>Runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>145.67</td>
<td>90</td>
<td>0.37</td>
<td>83</td>
<td>1.34</td>
</tr>
<tr>
<td>OTA1</td>
<td>520.64</td>
<td>167</td>
<td>0.31</td>
<td>170</td>
<td>36.30</td>
</tr>
<tr>
<td>OTA2</td>
<td>546.88</td>
<td>191</td>
<td>0.19</td>
<td>130</td>
<td>15.18</td>
</tr>
<tr>
<td>ADC1</td>
<td>2898.84</td>
<td>498</td>
<td>0.37</td>
<td>550</td>
<td>39.65</td>
</tr>
<tr>
<td>ADC2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Norm.</td>
<td>1.13</td>
<td>3.60</td>
<td>0.40</td>
<td>-</td>
<td>24.75</td>
</tr>
</tbody>
</table>

This work

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>WL</th>
<th>VIA</th>
<th>Sym Deg.</th>
<th>DRV</th>
<th>Runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>138.40</td>
<td>19</td>
<td>0.95</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>OTA1</td>
<td>386.80</td>
<td>38</td>
<td>0.88</td>
<td>0</td>
<td>1.71</td>
</tr>
<tr>
<td>OTA2</td>
<td>523.40</td>
<td>79</td>
<td>0.70</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>ADC1</td>
<td>2686.60</td>
<td>175</td>
<td>0.62</td>
<td>0</td>
<td>2.70</td>
</tr>
<tr>
<td>ADC2</td>
<td>3327.60</td>
<td>184</td>
<td>0.69</td>
<td>0</td>
<td>18.82</td>
</tr>
<tr>
<td>Norm.</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>-</td>
<td>1.00</td>
</tr>
</tbody>
</table>

13% WL reduction
DRC clean
24X speedup
Experimental Results

Setup
- C++ with Boost, Lemon
- CPU: Intel i9-7900X @ 3.3GHz

Benchmark circuits
- COMP: comparator
- OTA1: Miller compensation OTA
- OTA2: 2-stage feedforward compensation OTA
- ADC1: 2nd-order CT ΔΣ modulator
- ADC2: 3rd-order CT ΔΣ modulator

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Schematic</th>
<th>[Zhu+, ICCAD'19]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fs (MHz)</td>
<td></td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>BW (MHz)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SNDR (dB)</td>
<td>67.7</td>
<td>63.0</td>
<td>63.5</td>
</tr>
<tr>
<td>SFDR (dB)</td>
<td>84.8</td>
<td>78.0</td>
<td>81.7</td>
</tr>
<tr>
<td>Power (uW)</td>
<td>838.1</td>
<td>842.6</td>
<td>858.0</td>
</tr>
</tbody>
</table>

ADC1 simulation result

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Schematic</th>
<th>[Zhu+, ICCAD'19]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS (MHz)</td>
<td></td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>BW (MHz)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SNDR (dB)</td>
<td>67.7</td>
<td>63.0</td>
<td>63.5</td>
</tr>
<tr>
<td>SFDR (dB)</td>
<td>84.8</td>
<td>78.0</td>
<td>81.7</td>
</tr>
<tr>
<td>Power (uW)</td>
<td>838.1</td>
<td>842.6</td>
<td>858.0</td>
</tr>
</tbody>
</table>

OTA2 simulation result

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Schematic</th>
<th>[Zhu+, ICCAD'19]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Gain (dB)</td>
<td>54.0</td>
<td>52.9</td>
<td>54.1</td>
</tr>
<tr>
<td>BW (MHz)</td>
<td>605.2</td>
<td>444.8</td>
<td>477.0</td>
</tr>
<tr>
<td>PM (degree)</td>
<td>64.1</td>
<td>75.3</td>
<td>76.1</td>
</tr>
<tr>
<td>Offset (uV)</td>
<td>-</td>
<td>893.3</td>
<td>145.7</td>
</tr>
<tr>
<td>Noise (uVrms)</td>
<td>12070.1</td>
<td>9711.5</td>
<td>9822.1</td>
</tr>
<tr>
<td>Power (uW)</td>
<td>428.7</td>
<td>424.3</td>
<td>439.7</td>
</tr>
</tbody>
</table>
Experimental Results (ADC2)

Monte-Carlo simulation

- **SNDR (dB)**
 - $\mu = 65.8$, $\sigma = 1.1$

- **SFDR (dB)**
 - $\mu = 76.0$, $\sigma = 3.5$

- **Power (uW)**
 - $\mu = 759.3$, $\sigma = 2.6$

PVT simulation

<table>
<thead>
<tr>
<th>Corner</th>
<th>SNDR (dB)</th>
<th>SFDR (dB)</th>
<th>Power (uW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT-N</td>
<td>66.1</td>
<td>79.8</td>
<td>759.0</td>
</tr>
<tr>
<td>TT-C</td>
<td>67.4</td>
<td>80.8</td>
<td>747.8</td>
</tr>
<tr>
<td>TT-H</td>
<td>64.3</td>
<td>78.3</td>
<td>774.7</td>
</tr>
<tr>
<td>FF-C</td>
<td>71.9</td>
<td>83.5</td>
<td>812.2</td>
</tr>
<tr>
<td>FF-H</td>
<td>65.4</td>
<td>82.7</td>
<td>854.4</td>
</tr>
<tr>
<td>SS-C</td>
<td>62.4</td>
<td>77.8</td>
<td>679.8</td>
</tr>
<tr>
<td>SS-H</td>
<td>62.1</td>
<td>76.8</td>
<td>711.9</td>
</tr>
</tbody>
</table>
Experimental Results (ADC2)

Taped-out and in measurements!!
Conclusions

AMS Router

• Symmetry constraint allocation
• Pin Access Assignment
• Hierarchical routing scheme for large/complicated systems with pin clustering
• Sign-off quality layout (DRC/LVS clean, performance guaranteed)

Future directions

• Advanced technology nodes (FinFET)
• Extended circuit classes
• This work is part of the MAGICAL project

• End-to-end analog layout automation system

• Open source at Github: https://github.com/magical-eda/MAGICAL
Thank you!